orka.agents.local_llm_agents module

Local LLM Agents Module

This module provides agents for interfacing with locally running large language models. Supports various local LLM serving solutions including Ollama, LM Studio, LMDeploy, and other OpenAI-compatible APIs.

Local LLM agents enable: - Fully offline LLM workflows - Privacy-preserving AI processing - Custom model deployment flexibility - Reduced dependency on cloud services - Integration with self-hosted models

class orka.agents.local_llm_agents.LocalLLMAgent(agent_id, prompt, queue, **kwargs)[source]

Bases: LegacyBaseAgent

Calls a local LLM endpoint (e.g. Ollama, LM Studio) with a prompt and returns the response.

This agent mimics the same interface as OpenAI-based agents but uses local model endpoints for inference. It supports various local LLM serving solutions like Ollama, LM Studio, LMDeploy, and other OpenAI-compatible APIs.

Supported Providers:

  • ollama: Native Ollama API format

  • lm_studio: LM Studio with OpenAI-compatible endpoint

  • openai_compatible: Any OpenAI-compatible API endpoint

Configuration Example:

```yaml - id: my_local_agent

type: local_llm prompt: “Summarize this: {{ input }}” model: “mistral” model_url: “http://localhost:11434/api/generate” provider: “ollama” temperature: 0.7

```

run(input_data)[source]

Generate an answer using a local LLM endpoint.

Parameters:

input_data (dict or str) – Input data containing: - If dict: prompt (str), model (str), temperature (float), and other params - If str: Direct input text to process

Returns:

Generated answer from the local model.

Return type:

str

build_prompt(input_text, template=None, full_context=None)[source]

Build the prompt from template and input data.

Parameters:
  • input_text (str) – The main input text to substitute

  • template (str, optional) – Template string, defaults to self.prompt

  • full_context (dict, optional) – Full context dict for complex template variables

Returns:

The built prompt

Return type:

str